Hall Ticket Number:

Code No.: 8135 M

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (CBCS : Mech. Engg.) I-Semester Make up Examinations, March-2017

(Advanced Design & Manufacturing)

Theory of Elasticity and Plasticity

Max. Marks: 70

Time: 3 hours Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 × 2 = 20 Marks)

- 1. Define stress at a point.
- 2. Find out the maximum shear stress if the principal components of stress in tension are 300 MPa, 200 Mpa and 50 MPa in compression.
- 3. Find the octahedral shear strain for the following strain tensor $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \\ 1 & 4 & 2 \end{bmatrix} \times 10^{-3}$.
- Prove that the first invariant of deviatoric strain tensor is zero.
- 5. State the differential equations of equilibrium for a three dimensional case.
- 6. State and explain generalized Hook's law? How many material constants need to be defined for a isotropic body in three dimensional stress space to define relation between stress and strain?

		[100	100	200	
7.	Find the von-Mise's effective stress for the following stress tensor	100	-50	100 MPa.	MPa.
		200	100	20]	

- 8. What is isotropic hardening?
- 9. In a wire drawing process a wire of 12 mm is drawn to a diameter of 10 mm. if the flow stress of the material is 200 MPa, find the load required for drawing operation. Neglect the friction and redundant work.
- 10. State any two properties of slip lines.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11	a) Prove that the stress tensor is symmetric.					[4	1]
11.	a) 110ve that the stress tensor is symmetry	[300	200	100]			
	b) Find the principal stresses for the following stress tensor	200	200 150	300 N	300 MPa.	[6	6]
		1100	300	50]			

12. a) Derive the expression for the principal components for plane strain condition.

- b) The displacement functions in U, V, W in X Y and Z directions respectively are given [6] by U = 5xyz; V = $x^2y + 3y^2 + 4z^2$ and W = 2xy + 4xz + 3yz, find out strain tensor.
- 13. a) What is an orthotropic material? State its material property matrix for a three dimensional [4] case.
 - b) Find the stress tensor for the following strain tensor

1	2	4	1]		
-	4	1	3	X	10 -3
	1	3	3		

when Young's modulus and Poison's ratio are 200 GPa and 0.25 respectively.

[4]

[4]

[6]

-		
14.	a) Prove that the yield surface of von-Mise's is a cylinder with axis equally inclined to the	e [4]
	principal axis and has a radius of $\sqrt{\frac{2}{3}} \sigma_0$	
	b) Derive the expression for Prandtle-Reuss relations of plastic flow.	[6]
15.	a) Derive the expression for the wire drawing force using uniform deformation theory.	[4]
	b) Using slab method prove that the variation of pressure distribution along the length o the slab is exponential with maximum at the center in case of slipping condition.	of [6]
16.	a) State the representation and components of stress tensor for a three dimensional case.	[4]
	b) What is deformation tensor? Divide the deformation tensor into strain and rotation tensors.	n [6]
17.	Answer any two of the following:	
	a) Discuss the compatibility equations.	[5]
	b) Derive the expression of true stain in terms of engineering strain.	[5]
	c) St. Venanat's theory of plastic flow.	[5]
	୯୫୯୫୯୫୭୭୬	